Contribution No. 5304 from the Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91 125

Polarized Electronic Absorption Spectra **of** (n-Bu4N)2[Pt(CN)4] at **5 K**

CHARLES D. COWMAN and HARRY B. GRAY*

Received April 5, I976 AIC60253A

The polarized absorption spectra of thin single crystals of $(n-Bu_4N)_{2}[Pt(CN)_{4}]$ have been studied in the region 282–218 nm at 5 K. The observed spectral bands in D_{4h} Pt(CN) 4^{2-} may be assigned satisfactorily to transitions of the metal-to-ligand charge transfer (MLCT) type. Band polarizations and intensities establish that the excited states, which are derived from $d \rightarrow a_{2u}$ transitions, are strongly mixed by spin-orbit coupling. The lowest absorption system (35 520 cm⁻¹; σ polarized) charge transfer (MLCT) type. Band polarizations and intensities establish that the excited states, which are derived from $d \rightarrow a_{2u}$ transitions, are strongly mixed by spin-orbit coupling. The lowest absorption system (35 $d \rightarrow a_{2u}$ transitions, are strongly mixed by spin-orbit coupling. The lowest absorption system (35 520 cm⁻¹; σ polarized)
is attributed to ¹A_{1g} $\rightarrow E_u(^3A_{2u})$. Two intense, π -polarized bands are observed, at 3 is attributed to 'A_{1g} \rightarrow E_u('A_{2u}). Two intense, π -polarized bands are observed, at 38 020 and 45 290 cm⁻¹. These bands
are assigned to the two π -allowed d $\rightarrow a_{2u}$ transitions ¹A_{1g} \rightarrow A_{2u}(³E_u) are assigned to the two π -allowed d \rightarrow a_{2u} transitions 'A_{1g} \rightarrow A_{2u}⁽³E_u) and 'A_{1g} \rightarrow A_{2u}('A_{2u}), respectively. Intense, σ -polarized features at 38 880 and 45 700 cm⁻¹ are attributed to ¹A_{1g}

Introduction

Interest in the electronic structure of $Pt(CN)₄^{2-}$ has been intense in recent years.¹⁻⁹ Although an interpretation of the lowest electronic absorption bands of the planar anion in terms of metal-to-ligand charge transfer (MLCT) transitions of the lowest electronic absorption bands of the planar anion in terms
of metal-to-ligand charge transfer (MLCT) transitions of the
type $d \rightarrow a_{2u}$ was suggested as early as 1963,¹ the complexities
in the spectrum were not und in the spectrum were not understood at all until Piepho, Schatz, and McCaffery showed⁴ the importance of including spin-orbit coupling in the d^7 a_{2u} excited states. Most recently, Isci and Mason have refined⁸ the basic "spin-orbit $d \rightarrow a_{2u}$ " interpretation, and Marsh and Miller have reviewed⁹ the merits of various assignment schemes.

It became apparent to us some time ago that the polarizations of the lowest electronic absorption bands in suitable crystals containing relatively isolated $Pt(CN)₄$ ²⁻ units would be required to provide a sound experimental basis for a detailed set of transition assignments. Thus we have measured and analyzed the polarized electronic spectra of thin crystals of $(n-Bu_4N)_2[Pt(CN)_4]$ at 5 K.

Experimental Section

Crystals of $(n-Bu_4N)_2[Pt(CN)_4]$ were prepared as described previously. 3 Thin crystals for spectroscopic measurements were grown from 1,2-dichloroethane solution.

Electronic spectral data were obtained using a Cary Model 17 spectrophotometer equipped with an extended cell compartment. An Andonian Associates liquid helium optical Dewar was placed in the sample beam. Temperature $(5.0 \pm 0.1 \text{ K})$ was monitored with a calibrated carbon resistor. A double Glan-Taylor air-spaced calcite polarizing prism (uv cutoff 2150 **A)** was positioned in front of the sample, and a matching polarizer in the reference beam was rotated in tandem. All spectra were measured along the extinction directions of the crystal faces as determined with a polarizing microscope. Baselines for the polarizers and Dewar assembly were obtained for the same polarizer orientations and later subtracted from the spectra.

Results and Discussion

Absorbances measured parallel (A_{II}) and perpendicular (A_{\perp}) to a crystal extinction direction were transformed into out-of-plane $(A_{\pi} \equiv A_z)$ and in-plane $(A_{\sigma} \equiv A_{x,y})$ profiles under the assumption that the average orientation of the D_{4h} anions in $(n-Bu_4N)_2[Pt(CN)_4]$ is the same as found¹⁰ in $(n Bu_4N)_2[Ni(CN)_4]$. This assumption is supported by polarized infrared spectral measurements on crystals of the two compounds.¹⁰ The inverse matrix is¹⁰

$$
\begin{pmatrix} A_{\pi} \\ A_{\sigma} \end{pmatrix} = \begin{pmatrix} 3.564 & -2.564 \\ -0.038 & 1.038 \end{pmatrix} \begin{pmatrix} A_{\parallel} \\ A_{\perp} \end{pmatrix}
$$

In-plane and out-of-plane components in the polarized electronic spectra of $Pt(CN)₄²⁻$ are shown in Figure 1. Regions marked I, II, III, and IV correspond to bands observed in solution. $8,9$ The positions of the band systems in the crystal

Table I. Excited States Derived from $d \rightarrow a_2 \mu(p_z, \pi^* \text{CN}) \text{MLCT}$ Transitions in $Pt(CN)₄$ ²⁻

One-electron transition	Excited-state symmetry
$a_1g(d_z^2) \rightarrow a_2g$	A_1 u(³ A_2 u), Eu(³ A_2 u), A_2 u(¹ A_2 u)
$e_g(d_{xz}, d_{yz}) \rightarrow a_{2u}$	A_1 u(³ E _u), A_2 u(³ E _u), B_1 u(³ E _u),
	$B_2u({}^3E_u)$, $E_u({}^3E_u)$, $E_u({}^1E_u)$
$b_{2g}(d_{xy}) \rightarrow a_{2u}$	B_2 $u(^3B_1u)$, $E_u(^3B_1u)$, $B_1u(^1B_1u)$

Table II. Electronic Spectral Data for $(n-Bu_4N)_2 [Pt(CN)_4]$ at 5 K

 a E_u(³B₁u) or E_u(³E_u) + \overline{v} (C=N)_{a,g}. *b* Shoulder.

spectra are in excellent agreement with solution results. For example, band I peaks at $35\,400 \, \text{cm}^{-1}$ in aqueous solution at 300 K,8 whereas the maximum is observed at **35** 520 cm-' in a crystal of $(n-Bu_4N)_2[Pt(CN)_4]$ at 5 K.

The ground state of D_{4h} Pt(CN)₄²⁻ is ¹A_{1g}(b_{2g}²e_g⁴a_{1g}²).¹ If spin-orbit coupling is included, there are 12 excited states The ground state of D_{4h} Pt(CN) 4^{2-} is ${}^{1}A_{1g}(b_{2g}{}^{2}e_{g}{}^{4}a_{1g}{}^{2})$.¹
If spin–orbit coupling is included, there are 12 excited states
derived from MLCT transitions of the type d $\rightarrow a_{2u}$ (Table I). We shall concentrate our attention, however, on transitions to E_u and A_{2u} states, as these are allowed (polarized σ and *7,* respectively). Assuming an occupied d-level ordering of $a_{1g}(d_{z})$ > $e_{g}(d_{xz}, d_{yz})$ > $b_{2g}(d_{xy})$, which is well-established for $Ni(CN)₄²–^{4,11}$ theory predicts^{4,8,12} that the energies of the E_u and A_{2u} excited states should increase according to E_u - $(^3A_{2u})$ < A_{2u}(³E_u) < E_u(³E_u) < E_u(³B_{1u}) < A_{2u}(¹A_{2u}) < $E_u(^1E_u)$.

Band positions, polarizations, and suggested transition assignments for $Pt(CN)₄^{2-}$ are summarized in Table II. Band Band positions, polarizations, and suggested transition
assignments for $Pt(CN)_4^{2-}$ are summarized in Table II. Band
I is σ polarized, in accord with expectation for the ${}^{1}A_{1g} \rightarrow$ $E_u⁽³A_{2u})$ transition. The relatively small intensity of the band and the observation of a positive MCD \dot{A} term^{4,8} are also consistent with the assignment. The transition cannot be ¹A_{1g} \rightarrow E_u(³E_u), as in that case the π -polarized ¹A_{1g} \rightarrow A_{2u}(³E_u) would necessarily fall in the same region, and band I is strongly *u* polarized. Thus we may conclude, with confidence, that the would necessarily fall in the same region, and band I is strongly
 σ polarized. Thus we may conclude, with confidence, that the

lowest transition observed in absorption is in fact ${}^{1}A_{1g} \rightarrow$ $E_u(^3A_{2u})$, as first proposed by Piepho et al.⁴

Systems II and IV both contain strong π - and σ -polarized bands. The intense π -polarized features at 38 020 and 45 290 cm⁻¹ are attributed to ¹A_{1g} \rightarrow A_{2u}(³E_u) and ¹A_{1g} \rightarrow A_{2u}- $({}^{1}A_{2u})$, respectively. The weak π -polarized band in system II (39 140 cm⁻¹), which occurs in a region of strong σ polarization, could represent a component of a vibronically

Figure 1. Polarized single-crystal absorption spectra of $(n-Bu_aN)₂$ - $[Pt(CN)_4]$ at 5 K: solid line, σ spectrum; dashed line, π spectrum.

allowed transition. A firm assignment for this feature, however, cannot be made at this time. The positions of ${}^{1}A_{1g}$ \rightarrow A_{2u}(³E_u) and ¹A_{1g} \rightarrow A_{2u}(¹A_{2u}) are in reasonably good agreement with calculations that take $\xi = 3$ kK.^{8,12} To accord with theory, an interpretation based on transitions to $A_{2u}({}^3E_u)$ and A_{2u} ⁽¹A_{2u}) lying in the same region (at 38020 and 39140) cm⁻¹) would require an absurdly small ξ value (<500 cm⁻¹),¹² and is therefore rejected.

The strong σ -polarized bands in systems II (38 880 cm⁻¹) and IV (45700 cm^{-1}) may be assigned with confidence to the The strong σ -polarized bands in systems II (38 880 cm⁻¹) and IV (45 700 cm⁻¹) may be assigned with confidence to the transitions ${}^{1}A_{1g} \rightarrow E_{u}({}^{3}E_{u})$ and ${}^{1}A_{1g} \rightarrow E_{u}({}^{1}E_{u})$, respectively. Positions of transitions ${}^{1}A_{1g} \rightarrow E_{u}({}^{3}E_{u})$ and ${}^{1}A_{1g} \rightarrow E_{u}({}^{1}E_{u})$, respectively.
Positions of both A_{2u} and three of four E_{u} states, therefore,
have been determined. Only the position of ${}^{1}A_{1g} \rightarrow E_{u}({}^{3}B_{$ is in doubt. It is possible that the σ -polarized component of have been determined. Only the position of ¹A_{1g} \rightarrow E_u(³B_{1u}) is in doubt. It is possible that the σ -polarized component of band III (41 070 cm⁻¹) is ¹A_{1g} \rightarrow E_u(³B_{1u}) and that the π component represents a vibronically allowed transition either to B_{1u} , $B_{2u}({}^3E_u)$, or $B_{2u}({}^3B_{1u})$. Alternatively, the σ component could represent one quantum of the totally symmetric cyanide stretching vibration built upon the ${}^1A_{1g} \rightarrow E_u({}^3E_u)$ origin at 38 800 cm⁻¹, as 2190 cm⁻¹ is a reasonable value for $a_{1g}(C=N)$ in the $E_u(^3E_u)$ state.

It is encouraging that there is now a high degree of consistency between interpretations of the electronic spectra of $Ni(CN)_{4}^{2-11}$ and $Pt(CN)_{4}^{2-}$. It has been verified experimentally, through both solution MCD and single-crystal polarized spectra, that the lowest MLCT excited states arise

from the excitation $a_{1g}(d_{z^2}) \rightarrow a_{2u}$ and that spin-orbit effects are clearly not negligible. In $Ni(CN)_{4}^{2-}$, the two A_{2u} states are more strongly mixed via spin-orbit coupling than are the four E_u states,¹¹ whereas for $Pt(CN)_{4}^{2-}$ both A_{2u} and E_u sets appear to be thoroughly scrambled. The relatively large four E_u states,¹¹ whereas for $Pf(CN)4^{2-}$ both A_{2u} and E_u sets
appear to be thoroughly scrambled. The relatively large
intensities of the bands attributed to singlet \rightarrow "triplet"
transitions are consistent wi transitions are consistent with the high degree of excited-state mixing predicted by the calculations (e.g., the A_{2u} ³E_u) state of Pt($\widehat{\text{CN}}$)₄²⁻ possesses about 40% A_{2u} ⁽¹A_{2u}) character, according to both recent theoretical estimates^{8,12}). The d \rightarrow a_{2u} band systems of Pt(CN)₄²⁻ are distributed over a much wider energy range than those of $Ni(CN)_{4}^{2-}$, owing to the larger spin-orbit coupling in the 5d complex. This effect is illustrated by the positions of the A_{2u} states in the two cases, 38 020 and 45 290 cm⁻¹ in Pt(CN)₄²⁻ and 34 360 and 35 840 cm⁻¹ in Ni(CN)₄²⁻¹¹

The stabilization of MLCT excited states derived from cm⁻¹ in Ni(CN)4²⁻¹¹
The stabilization of MLCT excited states derived from
 $a_{1g}(d_zz) \rightarrow a_{2u}$ relative to those corresponding to $e_g(d_{xz}, d_{yz})$ The stabilization of MLCT excited states derived from
 $a_{1g}(d_{z^2}) \rightarrow a_{2u}$ relative to those corresponding to $e_g(d_{xz}, d_{yz})$
 $\rightarrow a_{2u}$ or $b_{2g}(d_{xy}) \rightarrow a_{2u}$ transitions in Pt(CN)₄²⁻ apparently

is a consequence of the is a consequence of the π -acceptor nature of cyanide ligands. Presumably, the e_g and b_{2g} orbitals in this complex possess some bonding character, whereas a_{1g} is nonbonding or slightly antibonding. It should also be mentioned that recent spectroscopic studies have shown that the lowest electronic excited states in planar $4d⁸$ and $5d⁸$ complexes containing phosphine and isocyanide ligands are also derived from the excited states in planar 4d° and 5d° complexes containing
phosphine and isocyanide ligands are also derived from the
 $a_{1g}(d_{z}^{2}) \rightarrow a_{2u}$ transition and that certain other similarities
to the $Pf(CN)$.²-spectrum appear to the Pt(\overline{CN})₄²⁻ spectrum appear to be present.¹³⁻¹⁵ Thus it may be reasonable to expect the present version of the "spin-orbit $d \rightarrow a_{2u}$ " interpretation of the electronic spectrum of $Pt(CN)₄²⁻$ to be a useful reference point in considering detailed assignments for MLCT bands in planar complexes containing heavy central metals and π -acceptor ligands.

Acknowledgment. We thank Kent Mann for assistance with several energy level calculations. This research was supported by the National Science Foundation.

Registry No. $(n-Bu_4N)_2[Pt(CN)_4]$, 21518-40-1.

References and Notes

-
-
- (1) H. B. Gray and C. J. Ballhausen, *J. Am. Chem. Soc.*, 85, 260 (1963).
(2) C. Moncuit, *J. Chim. Phys. Phys.-Chim. Biol.*, 64, 494 (1967).
(3) W. R. Mason and H. B. Gray, *J. Am. Chem. Soc.*, 90, 5721 (1968). (4) S. B. Piepho, P. N. Schatz, and **A.** J. McCaffery, *J. Am. Chem. Soc.,* **91,** 5994 (1969).
-
- (5) D. L. Webb and L. **A.** Rossiello, *Inorg. Chem.,* **10,** 2213 (1971). (6) M. L. Moreau-Colin, *Struct. Bonding (Berlin),* **10,** 167 (1972).
- (7) L. V. Interrante and R. P. Messmer, *Chem. Phys. Lett.,* **26,** 225 (1974); *ACS Symp. Ser., 5,* 382 (1974).
-
- (8) H. Isci and W. R. Mason. *Inorg. Chem.,* **14,** 905 (1975). (9) D. G. Marsh and J. **S.** Miller, *Inorg. Chem.,* **15,** 720 (1976).
- (IO) C. D. Cowman, Ph.D. Thesis, California Institute of Technology, 1974. (11) C. D. Cowman, C. J. Ballhausen, and H. B. Gray, *J. Am. Chem. Soc.*, **95**, 7873 (1973).
- (12) K. R. Mann, unpublished results.
- (13) G. L. Geoffroy, M. S. Wrighton, *G.* S. Hammond. and H. B. Gray, *J. Am. Chem.* Soc., **96,** 3105 (1974).
- **(14)** H. Isci and W. R. Mason, *Inorg. Chem.,* **14,** 913 (1975).
- 115) K. R. Mann. J. G. Gordon, **11,** and H. B. Gray, *J. Am.* Chem. Soc., **97,** 3553 (1975)